Severe Loss is not Rare in High-speed Datacenter Networks
--- Response to “A Critique of Aeolus”

Recently, we notice that there are some arguments [1] about whether severe loss is possible
in high-speed datacenter networks (DCNs). In this article, we would like to explain the theory
how modern switch chip works and demonstrate with concrete numbers that severe packet

loss is not rare under incast with high-speed DCNs.

High-speed DCN switch is becoming more shallow-buffered

Broadcom 56538

Broadcom Trident+

Broadcom Trident Il

Broadcom Tomahawk

Capacity 48port x 1Gbps | 48port x 10Gbps 32port x 40Gbps 32port x 100Gbps
Total Buffer 4MB 9MB 12MB 16MB (4 MMUs)
Buffer per port | 85KB 192KB 384KB 512KB

Buffer per port | 85KB 19.2KB 9.6KB 5.12KB

per Gbps

Table-1. Buffer and capacity information of commodity datacenter switching chips [2]

In recent years, datacenter network (DCN) link speed grows rapidly from 1/10Gbps to
100Gbps. In contrast, the buffer size of commodity switches does not increase as expected.
In Table-1, we have listed the buffer and capacity information of some widely used
commodity switching chips. As we can see, the link capacity significantly outpaces the buffer
size, resulting in decreasing buffer per port per Gbps (from 85KB to 5.12KB).

There are mainly two reasons that make high-speed switching chips even more shallow-
buffered. First, The memory used in switch buffers is high-speed SRAM which is very
expensive. Second, The chip area increases with the memory size, which means a larger
buffer may incur a longer memory access latency and it would be really hard for the memory
access speed to match the high link speed if the buffer size is too large. Due to above two
reasons, we envision that such trend will also hold for future 200/400Gbps switching chips.

How shared-buffer switch works
Most of today’s commodity switching chips use Dynamic Threshold (DT) algorithm [3] for
dynamic buffer allocation. The shared buffer allocated to a queue is controlled by a
parameter a. At time t, a threshold T(t) is used to limit the queue length. Let B, N and Qj(t)
be the total switch buffer size, total number of switch egress queues and buffer occupancy
of queue i at time t, respectively. T(t) is calculated as follows:

T(t) = ax (B- iy Q: (D)) (1)
A packet arriving in queue i at time t will get dropped if Qi(t) >= T(t). As analyzed in [3], if
there are M active queues, each queue can eventually get a. x B/(1 + M x a,) buffer space.
Obviously, the more active queues we have, the smaller buffer space each queue can get
from the shared buffer pool. Moreover, a large o can help a queue to get more buffer space.
But a too large a can cause short-term imbalanced buffer allocation. Typically, o values are
set powers of 2 for implementation simplicity (e.g., 1/128 to 8 in Tomahawk).



of active queues | 1 4 8 16 32 64
o
4 12.80MB | 3.76MB | 1.94MB| 0.98MB| 0.50MB| 0.25MB
1/4 3.20MB| 2.00MB| 1.33MB| 0.80MB| 0.44MB| 0.24MB
1/16 0.94MB | 0.80MB| 0.67MB| 0.50MB| 0.33MB| 0.20MB
1/64 0.25MB | 0.24MB| 0.22MB| 0.20MB| 0.17MB| 0.13MB

Table-2. Switch buffer an active queue can get with varying # of active queues and typical o values
(Taking 32port x 100Gbps Broadcom Tomahawk switching chip with 16MB buffer as an example.)

In Table-2, we have calculated the switch buffer an active queue can get with varying
number of active queues and typical o values.

In practice, there are several other constraints that will further reduce the size of buffer an
active queue can utilize for packet buffering. First, the architecture of high-speed switching
chips may consist of several smaller chip-lets for the purpose of faster memory access (e.g.,
a 32-port 16MB-buffer Broadcom Tomahawk switching chip consists of 4 8-port 4MB-buffer
switching chip-lets.). This architecture will limit the maximum buffer an active queue can get
to be 1/K of total buffer, where K is the total number of switching chip-lets (e.g., k = 4 for
Broadcom Tomahawk chip). Second, when processing incoming packets at both ingress and
egress processing pipelines, part of switch buffer will be used to store some metadata of
packets, which will consume a certain amount of switch buffer. Third, production DCNs
often serve several traffic classes simultaneously. One widely adopted strategy is to support
each traffic class with separate buffer space. For example, it is common to allocate half of
the switch buffer for supporting RDMA traffic, and let the remaining half to support TCP
traffic. This type of allocation strategy will also reduce the buffer size an active queue can
utilize. In summary, the size of switch buffer an active queue can utilize is often much less
than the values calculated in Table-2.

Severe packet loss under incast-like traffic is not rare

Many-to-many incast-like traffic is common in production DCNs. With such traffic, it is easy
for ToR switches to have multiple active queues that need to buffer incast traffic
simultaneously. Assuming 100Gbps link speed and 8us base RTT, in Table-3, we calculate the
buffer size needed by an active queue to buffer incast traffic in the first RTT with varying
incast degress (i.e., the number of concurrent flows) and message size. We calculate the
needed buffer size as message_size * incast_degree — BDP.

Message size | 10KB 20KB 40KB 80KB
Incast degree
20 0.1MB 0.3MB 0.7MB 1.5MB
40 0.3MB 0.7MB 1.5MB 3.1MB
80 0.7MB 1.5MB 3.1MB 6.3MB
160 1.5MB 3.1MB 6.3MB | 12.7MB
320 3.1MB 6.3MB | 12.7MB| 25.5MB

Table-3. Switch buffer size needed by an active queue to buffer incast traffic in the first RTT with
varying incast degress and message size.



By comparing the values in both Table-2 and Table-3, it is easy to find severe packet loss
under incast-like traffic is not rare in high-speed DCNs. For example, with 80 incast degree
and 20KB message size, more than 75% of the conditions presented in table-2 will suffer
from severe packet loss.

Is lossless property the right assumption for high-speed DCNs?

Some recent work, such as Homa[4], establishes its design by assuming DCN switches have
enough buffer for buffering all the bursty traffic in the first RTT. However, as we have
demonstrated with concrete numbers in previous sections, switches are becoming more
shallow-buffered at high-speed, and packet loss is easier to occur in the first RTT under
incast.

Furthermore, even if major cloud providers are willing to pay the expensive cost to deploy
switches with adequate buffer to absorb all the first-RTT traffic burst, it may not be a right
choice. The reason is that, once a large queue is built in the network in the first RTT, the
end-host transports can do nothing but wait until the queue is slowly drained and incur a
large delay to all flows passing through the port which hurts even more for modern Internet
services as latency is a more critical metric than throughput nowadays. In contrast, if we
drop the overwhelming traffic in the first RTT, there will be no large queue buildups and
persistent end-to-end low latency is well preserved. Packet loss is not a problem as long as
senders are notified about the loss quickly. This is the exact philosophy behind Aeolus [5] ---
dropping overwhelming first-RTT traffic in the network earlier to preserve low end-to-end
latency, and quickly notifying the sender to retransmit lost data since second RTT according
to the available bandwidth it shares.
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